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Scientific Progress and Accomplishments 
 

A major stride has been made in terms of implementing and testing the base view 

active contour approach. Base view active contours are an improvement upon basic non-

rigid active contours for tracking rigid vehicle targets.  The base view active contour 

assumes that a vehicle’s contour evolution can be represented by a finite set of contours.  

We look to exploit knowledge of the target vehicle to improve upon the non-rigid active 

contour in several ways.   

The first goal is to increase the accuracy of the segmentation under noisy 

conditions.  Base view active contours limit the way the active contour is allowed to 

evolve to only those shapes that the vehicle is known to be capable of appearing, thus 

eliminating spurious contour shapes resulting from noise in the system.  Secondly, base 

view active contours seek to provide information about the pose of the vehicle of interest.  

Because of the predefined states which define the base views, knowing what state the 

algorithm is in with concern to segmentation and tracking also gives information about 

which way the vehicle is facing.  This vehicle pose knowledge gives information that 

normally would require a human observer to interpret.  One example of this is that 

knowing the pose of a vehicle as well as its direction of motion can tell the observer 

whether a vehicle is backing up as opposed to driving forward.  The pose information 

could also be used in conjunction with a Kalman technique to provide refined observation 

in that the car should only have velocity relative to the direction it is facing. 



A. Base View Sets 

The idea behind the base view active contour begins with the intuitive notion that 

the more one knows about the shape of an object the better one should be able to track 

that object.  The base views acquired for the proposed algorithm seek to describe the 

possible ways in which a camera might image the vehicle of interest.  Base views 

encompass as wide a range of angles of the vehicle as possible through the evenly spaced 

sampling of the vehicle’s image space.  This image space, as defined by this algorithm, 

includes all the possible 2D images that could be acquired by rotating a camera about a 

3D model of the vehicle of interest, where the camera distance from the vehicle is fixed 

at some arbitrary distance such that, at any angle, the entire vehicle is visible and not cut 

out of the camera’s field of view. 

There are two important points in this definition of the base view sets.  One is that 

the sets must be sampled evenly throughout the image space.  After more preprocessing 

of the base view sets, this provides even spacing of the base view active contour states.  

Even spacing of the base view sets is important for the accuracy of the tracking and 

segmentation as well as having a well behaved transition between states.  The behavior of 

states that are too far apart relative to the other states in its neighborhood presents a 

decrease in the likelihood for transition to that particular state which may or may not be a 

desired behavior. 

 The second important point for the definition of the base view sets is that the 

camera must be at a sufficient distance relative to the 3D model such that the entire 

vehicle can be seen.  This stipulation requires all the of the base views to be acquired at 

the same relative scale, an important point for implementation, and that the whole vehicle 



is in the field of view to permit a complete and accurate contour acquisition in the next 

phase of preprocessing. 

Assuming that the algorithm would be applied to a surveillance application 

narrows down the area of the image space needed to sample to accurately represent the 

vehicle.  In a street level surveillance application there are angles relative to the vehicle 

that the camera will not achieve, thus eliminating the need to sample those.  For example, 

we need no images of the bottom of a vehicle because those perspectives would never be 

imaged in a surveillance situation.  A less obvious application of this idea is that for a 

given camera field of view, one could reduce the size of the base view set to only those 

vehicle perspectives the camera captures.  A camera looking out toward a parking lot 

would not necessarily require contours representing a direct top down view of a vehicle 

because that particular angle would not be obtained in its normal field of view. 

 

B. Acquisition of Base View Sets 

 Since the quality of the of the base view sets has a direct impact on the 

performance of the algorithm great care was taken in their acquisition and preparation for 

use in the algorithm.  The base views had to be taken at known and evenly spaced angles 

to assure thorough coverage of the image space of the vehicle.  The lighting and 

background in the base views also had to be consistent; such conditions would allow the 

active contour method used to acquire the base view active contours more consistently 

and accurately represent the vehicle.  In this way we seek to minimize the noise in the 

process of acquiring the base view contours of interest. 



 The 3D models used in capturing the base views are standard 1:18 scale.  This 

model scale proved easy to image because of its convenient size and yet contained 

enough detail to accurately represent its respective vehicle.  An electrically actuated, fully 

translating mechanical arm was utilized to ensure equal spacing of the acquired images.  

The mechanical arm system was capable of angles from 0 – 90 degrees in the φ direction 

and 0 – 360 degrees in the θ direction.  As stated before, the distance between the camera 

and the vehicle, ρ, was held constant to fix the scale of the base view contours. 

Utilizing the mechanical arm and a digital camera, images of the vehicle models 

were collected at evenly spaced intervals.  The movements of the mechanical system are 

precise to the degree, though the base view sets collected were, at their finest, taken at 

tens of degrees.  Taking the sets at tens of degrees avoids the mechanical error of taking 

sets near the precision of the mechanical system and also decreases the storage space 

necessary to contain the full base view sets.  Given a more precise imaging system as 

well as no limits on storage of images the base view sets could be taken at any arbitrary 

interval of degrees.  The smaller the sampling interval the closer each base view becomes 

to its neighbors in that the neighboring images will more closely resemble each other.  

Neighboring images are those images that are close to each other in the image space.  The 

“image space” of an object is simply a term referring to the many potential perspective of 

an object that can be imaged by a camera.  An example of this is shown in Figure 1. 



 

Figure 1. A neighborhood of vehicle images.  The central image is the center of the 
neighborhood.  Each of the outlying images is a neighbor to the central image because 
when the images were taken by the mechanical arm they were separated only by one 
sampling interval either in the φ or θ direction. 
 
The primary reason, however, for taking coarse samples of the vehicles’ image space is to 

demonstrate an assumption of this approach that a vehicle being imaged by a fixed 

camera will pass through distinct states that can be prerecorded.  By taking a coarse 

sample of the image space, the images are far enough apart to be distinct from each other 

allowing the desired state based view of the movement of the vehicle through an image 

sequence. The base view active contour process is demonstrated in Figures 2-5. 



 

Figure 2. A raw set of base view images. 

 

Figure 3. A base view set after background subtraction. 



 

Figure 4. The base view set after a VFC snake find the contour around each view. 

 

Figure 5. The final product of the preprocessing is the vehicle represented only by its 
shape at different views. 
 
 



C. Preprocessing of Base View Sets 

Since base view active contours utilize the contour of a vehicle and not a raw 

image template as used by a correlation tracker some preprocessing of the base views is 

required before their application to the tracking method.  The first step in the 

preprocessing is to remove everything from the acquired base views that is not the 

vehicle in question.  This is done through a simple background removal process that is 

made even simpler because of the preparations made during image acquisition.  During 

image acquisition lighting and background were controlled so that the background would 

be a much different color than that of the vehicle itself.  Using color segmentation, where 

the color of the background is sampled and averaged, the background is located and then 

removed from the image.  The background was replaced by a flat white color.  The 

choice of a uniformly white background provides a high level of contrast between the 

vehicle and the new background which improves the performance of the next step of the 

preprocessing, contour acquisition. 

 The contour acquisition process occurs after the full set of base views have been 

set against the uniformly white background.  Then, view by view, a VFC active contour 

is applied to the base view set.  Because this process is not limited by time constraints, 

noise, occlusions, or any other problems associated with tracking the active contours are 

given all the benefits necessary to ensure that they accurately capture the edges of the 

vehicle in each view.   

The final step in preprocessing involves the preparations necessary for the use of 

the now base view active contours in the actual tracking algorithm.  These preparations 

include the calculation of the area enclosed by the active contour as well as the center of 



mass of each active contour.  These two measures are necessary because though the 

contours themselves are now generalized, the description of the contours is based on the 

snaxel locations in these base view images.  Having the initial areas and centers of mass 

located allows the contours to be easily translated and scaled during the tracking scenario.  

The contours, with their respective areas and centers of mass, are then stored so that they 

can be easily accessed and referenced by the tracking portion of the algorithm. 

 

D. Base View Contours Applied to a Hidden Markov Model Architecture 

 Once the base views are collected a method is necessary to allow for accurate and 

quick transistions between them so that the best base view contour is used to track the 

vehicle in a given frame of video.  A hidden Markov approach provides the architecture 

and underlying model for the base view active contour algorithm.  The HMM is useful in 

this case because we wish to represent the change in shape of a vehicle throughout a 

tracking sequence as a transition between states which are a part of the vehicles shape 

space.  The HMM accommodates this assumption because as discussed previously, the 

HMM assumes that the system being modeled is a Markov chain; that the next state 

depends only on the previous state.  This makes intuitive sense in that the next shape of 

the vehicle in question should depend only on the shape of the vehicle in the previous 

state (or time step).   

The base view contours that are collected for a particular vehicle provide one part 

of the HMM architecture immediately:  the number of states N.   N is defined simply by 

the number of base views taken because each view was taken to represent a state that the 

shape of the vehicle’s outline might take during a tracking sequence.  Other parts of the 



HMM architecture can be taken indirectly from the base view contours.   The state 

transition model is simply an organized version of the base view contours such that the 

“neighboring” states are no more than one step a part.  That is, a neighborhood of base 

view contours consists of those contours whose similarity to each other comes from the 

fact that they were acquired at similar (closely related) angles of θ and φ.  It follows that 

turning the vehicle left or right, up or down from the current state should transition to one 

of the neighboring states.  Figure 6 shows an example Markov chain for a base view 

contour set.  Note:  The arrows at the edges of the figure do not necessarily transition to 

the state on the opposite edge of the figure. 

 

 

Figure 6. The Markov chain representing an N = 18 base view contour set.  Each state is 
indexed by the angles of θ and φ that they were acquired at to simplify setting up the 
structure.  Transitions are allowed between horizontal and vertical neighbors. 
 



The Markov chain in Figure 6 also lends insight into the observation model 

number, M, for the HMM architecture.  Looking at the neighborhood around a single 

state shows the possible observations the system should expect in the next time step.  For 

example, in Figure 6, being in state S9 at time t, the Markov property holds that at time 

t+1 the state can only have progressed to states S3, S10, S15 or S8.  Therefore, the available 

observations are those representing the current state, S9 , and its four neighboring states.  

This is true for every state in this Markov chain which gives an observation number, M, 

of five for each state.  Figure 7 shows the observations neighborhoods for a portion of the 

states and how they may overlap. 

 

 

Figure 7. Observation neighborhoods within the hidden Markov model.  States can be 
part of several different neighborhoods depending on what state the system is in at a 
given instant. 
 



The state transition probability distribution, A, indicates to the model the states the 

HMM is allowed to transition to and from.  Again, the Markov chain defined by the base 

view contours gives intuition in how this is formed.  At first glance it appears that each 

state should have an equal likelihood of transition; the transition probability distribution 

should be uniform over a single neighborhood of five contours.  Making the distribution 

uniform, however, creates an undesirable behavior.  In some instances, where the vehicle 

being tracked is not changing its pose toward the camera (i.e. the state should not be 

transitioning when the vehicle is driving in a straight line across the field of view) the 

HMM would change states back and forth between multiple states within a neighborhood. 

In order to smooth out this behavior, the probability density weighting was 

changed from that of a uniform shape to a more discretely Gaussian shape, i.e. the current 

state, being at the center of the Gaussian, is favored over the outlying states.  In this way, 

the HMM is more likely to remain in the current state than make random transitions to 

neighboring states.  In addition, to make the model more responsive to changes within the 

image, another weighting factor is added to the transition probability distribution.  As we 

know from the discussion of active contours previously, an active contour seeks to 

minimize the external energy because it is closely related to the edges in the image.  

Therefore, we added a weighting based on the normalized external energy of the base 

view contour. 

 

E. Base View Active Contours as Constrained VFC Active Contours 

 The active contour method put forth in this approach evolves the shape of the 

contours through the use of the HMM paradigm.  Base view active contours remain 



active contours in that they still seek to minimize the external energy by moving toward 

edges of interest.  Base view active contours, however, have a rigid shape and therefore 

do not need to account for the internal energy of the contour explicitly.  Rather, in 

between each step where the state of the HMM is changed, the base view contour of the 

current state is evolved through scaling and translation to better locate itself upon the 

edges of the target vehicle. 

 

F. Vector Field Convolution and Base View Active Contours 

 Vector field convolution snakes have been shown in previous work to have large 

capture ranges while maintaining relative insensitivity to noise (Li and Acton, 2007).  

These favorable properties come from the way that the external force is calculated; the 

edge map of the image is convolved with a vector field pointing toward the origin.  The 

resulting external force has vectors that point toward the nearest significant edge.  Even 

though the evolution of base view active contours is different from a normal snake, the 

VFC external force characteristics are still desirable and the external force for base view 

active contours is constructed as described in (Li and Acton, 2007). 

 The external force, however, is where the similarity ends.  The base view contours 

must be evolved in such a way that their shape is maintained and thereby remaining in the 

current state of the HMM.  Thus, the only evolutions of the base view contours are 

scaling and translation because these do not alter the shape of the base view contours. 

 

 

 



G. Results Summary  

A base view active contour method has been developed and tested for target 

tracking. The base view active contour displayed an average error 10% more accurate 

than the correlation tracker and 14% more accurate than the centroid tracker tested with 

120 synthetic videos corrupted with both Gaussian and impulse noise.  Over 46 real video 

sequences base view active contours successfully tracked the target in an average of 80% 

of the frames as compared to 73% of the frames for the centroid tracker and 83% for the 

correlation tracker.  When the real video sequences containing target occlusion were 

removed from consideration, the base view active contour successfully tracked in an 

average 87% of the frames whereas the correlation tracker’s performance dropped to only 

75% of the frames.  None of the tracking methods tested in this work were designed to 

track under occlusion so removing real videos containing an occluded target gives a 

clearer indicator of the true relative performance of the trackers.  Overall, base view 

active contours outperform the competing methods in the synthetic and real video 

experiments. 

The PI and students at the University of Virginia has published these results in top 

journals and in major international conferences. A list of these publications is attached. 

 


